Algoritma Apriori Untuk Menemukan Pola Aturan Asosiasi

  • Wahju Tjahjo Saputro Universitas Muhammadiyah Purworejo
  • Hamid Muhammad Jumasa Universitas Muhammadiyah Purworejo
  • Murhadi Murhadi Universitas Muhammadiyah Purworejo
Keywords: Apriori, Support, Confidence, Association


Association is one of the methods in data mining, which is looking for a similar pattern in data transactions or certain items that often appear. So that the supermarket manager can determine in making decisions on the pattern of items purchased together and often appears in the database. In order to generate patterns from association rules, there are several algorithms that can be used. First pioneered by the AIS Algorithm, then increased memory performance by the Apriori algorithm. The Apriori algorithm process involves several steps. Such as determining the minimum support, confidence, candidate itemset. The process continues until the pattern is obtained according to the support and confidence criteria of the minimum threshold value. Most of the algorithms used to find patterns of association rules start with the Apriori algorithm, then progress to the Apriori series algorithm. But there are two obstacles to the Apriori algorithm. One of them is the process of making complex candidates that mostly require time, space, and memory. Another problem is the repeated scanning of large-scale databases.

Author Biographies

Wahju Tjahjo Saputro, Universitas Muhammadiyah Purworejo

Academic profile: Orcid ID | Sinta | Scholar

Hamid Muhammad Jumasa, Universitas Muhammadiyah Purworejo

Academic profile: Orcid ID | Sinta | Scholar

Murhadi Murhadi, Universitas Muhammadiyah Purworejo

Academic profile: Orcid ID | Sinta | Scholar


Agrawal, R. (2013). Fast Algorithms For Mining Association Rules In Datamining. International Journal of Scientific & Technology Research, 2(12), 13–24.

Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining Association Rules Between Sets of Items in Large Databases. ACM SIGMOD Record, 22(2), 207–216.

Anisa, Siti, & Saputro, Wahju. T. (2012). Implementasi Data Mining Menggunakan Metode Deskripsi Untuk Mengetahui. 1–12.

Fürnkranz, J. (2013). Association Rule. Encyclopedia of Systems Biology, 7(1), 47–47.

Handojo, A., Budhi, G. S., & Rusly, H. (2004). Aplikasi Data Mining Untuk Meneliti Asosiasi Pembelian Item Barang di Supermarket Dengan Metode Market Basket Analysis. Seminar Nasional Teknologi Informasi 2004, 10–17.

Hegland, M. (2007). the Apriori Algorithm – a Tutorial. 209–262.

Kaur, J., & Madan, N. (2015). Association Rule Mining: A Survey. International Journal of Hybrid Information Technology, 8(7), 239–242.

Park Jong, S., Chen, M., & Yu, P. S. (1995). An Effective Hash-Based Algorithm for Mining Association Rules. 175–186.

Pasa, Ike Y., & Saputro, Wahju T. (2018). Pendekatan Algoritma Aprioti pada Data Mining untuk Menentukan Pola Belanja Konsumen. Intek, 1 No 1(2009), 1–9.

Savasere, A., Omiecinski, E., & Navathe, S. (1995). An Efficient Algorithm for Mining Association Rules in Large Databases. 368.

How to Cite
Saputro, W. T., Jumasa, H. M., & Murhadi, M. (2020). Algoritma Apriori Untuk Menemukan Pola Aturan Asosiasi. INTEK : Jurnal Informatika Dan Teknologi Informasi, 3(1), 9-16.

Most read articles by the same author(s)

1 2 > >>