Klasifikasi Kesiapan Anak Taman Kanak-Kanak Masuk Sekolah Dasar Menggunakan Metode Naive Bayes

  • Yuli Praptomo Pamungkas Hari Sungkowo STMIK El Rahma Yogyakarta
  • Deni Ambarwati STMIK El Rahma, Yogyakarta
Keywords: Classification, Elementary school, Data mining, Nave Bayes

Abstract

In accordance with government regulations that prospective new students in grade 1 (one) elementary school must meet the age requirements of 7 (seven) years; or at least 6 (six) years on July 1 of the current year. In addition to the age factor, there are other aspects that affect the readiness of kindergarten children to enter elementary school, namely cognitive, gross motor, fine motor, language, and social emotional aspects. However, many students enter elementary school although there are still some aspects that cannot be fulfilled. Therefore, a classification is needed to find out whether these students have readiness to enter the elementary school level or not. The classification of children's readiness to enter elementary school in this study uses the nave Bayes method, with attributes used include age, ability to read, write, count, and independence. The results of this study are to determine the readiness of students to enter elementary school so that later students and teachers will not be overwhelmed in participating in teaching and learning activities. Based on the test results, obtained an accuracy value of 94.23%. From the test results, it can be concluded that the Naïve Bayes method can be used to classify students' readiness to enter elementary school.

References

Anam, Syaiful, M. (2021). Sistem Pendukung Keputusan Bantuan Sosial Dengan Menggunakan Metode Naive Bayes. Jurnal Sistem Telekomunikasi Elektronika Sistem Kontrol Power Sistem & Komputer, 1(1), 85–92.
Bustami. (2014). Penerapan Algoritma Naive Bayes Untuk Mengklasifikasi Data Nasabah Asuransi. Jurnal Informatika Ahmad Dahlan, 8(1), 102632. https://doi.org/10.26555/jifo.v8i1.a2086
Eden, B., Asrul, W., & Zuhriyah, S. (2018). Sistem Informasi Peramalan Harga Pangan Dengan Menggunakan Metode Naïve Bayes Di Kota Makassar. Jurnal Sistem Informasi Dan Teknologi Informasi, 7(2), 163–171.
Hartinah, S. (2019). Penerapan Data Mining untuk Memprediksi Kesiapan dan Kematangan Anak Masuk Sekolah Dasar Menggunakan Metode Naive Bayes. UNIVERSITAS PELITA BANGSA.
Jananto, A. (2013). Algoritma Naive Bayes untuk Mencari Perkiraan Waktu Studi Mahasiswa P ( H | X ) P ( X | H ) P ( H ). Jurnal Teknologi Informasi DINAMIK, 18(1), 9–16.
Menarianti, I. (2015). Klasifikasi Data Mining dalam Menentukan Pemberian Kredit bagi Nasabah Koperasi. Jurnal Ilmiah Teknosains, 1(1), 1–10. http://e-jurnal.upgrismg.ac.id/index.php/JITEK/article/view/836
Nurdiawan, O., & Salim, N. I. C. (2018). Penerapan Data Mining Pada Penjualan Barang Menggunakan Metode Naive Bayes Classifier untuk Optimasi Strategi Pemasaran. Jurnal Teknologi Informasi Dan Komunikasi STMIK Subng, April, 84–95.
Sanubari, T., Prianto, C., & Riza, N. (2020). Odol (one desa one product unggulan online) penerapan metode Naive Bayes pada pengembangan aplikasi e-commerce menggunakan Codeigniter. Kreatif.
Saputro, I. W., & Sari, B. W. (2020). Uji Performa Algoritma Naïve Bayes untuk Prediksi Masa Studi Mahasiswa. Creative Information Technology Journal, 6(1), 1. https://doi.org/10.24076/citec.2019v6i1.178
Siregar, A. M., & Puspabhuana, A. (2017). DATA MINING Pengolahan Data Menjadi Informasi dengan RapidMiner. CV. Kekata Group.
Werdiningsih, I., Nuqoba, B., & Muhammadun. (2020). Data Mining Menggunakan Android, Weka, dan SPSS. Airlangga University Press.
Yendrizal. (2022). Monograf Algoritma C4.5 Pada Teknik Klasifikasi Penyusutan Volume Pupuk. Cv. Azka Pustaka.
Ziegel, E. R., Fayyad, U. M., Piatetski-Shapiro, G., Smyth, P., & Uthurusamy, R. (1998). Advances in Knowledge Discovery and Data Mining. In Technometrics (Vol. 40, Issue 1). MIT Press. https://doi.org/10.2307/1271414
Published
2023-05-28
How to Cite
Sungkowo, Y. P. P. H., & Ambarwati, D. (2023). Klasifikasi Kesiapan Anak Taman Kanak-Kanak Masuk Sekolah Dasar Menggunakan Metode Naive Bayes. INTEK : Jurnal Informatika Dan Teknologi Informasi, 6(1), 32-41. https://doi.org/10.37729/intek.v6i1.3037
Section
Articles