Kompresi Adaptif untuk Streaming Multimedia Multi-Platform: A Review

  • Nia Ekawati Politeknik TEDC
  • Shandy Tresnawati Politeknik TEDC
  • Shofwan Hanief Institut Teknologi dan Bisnis STIKOM Denpasar
  • Wahju Tjahjo Saputro Universitas Muhammadiyah Purworejo

Abstract

The current digital era is characterized by cross-platform multimedia consumption, which has become the backbone of information and entertainment, with video content dominating more than 82% of total global internet traffic. The main challenge of adaptive compression for multi-platform multimedia streaming lies in device heterogeneity, network conditions, and the need for Quality of Experience (QoE), as adaptive compression adjusts the bitrate, resolution, and encoding level in real-time. The aim of this research is to explore these issues through a literature review study to identify the scope, taxonomy, gaps, and proposed future research directions. The method used is a literature review covering 51 publications (interval 2019-2025) to examine conceptual aspects, system taxonomy (System Architecture Layer, Adaptation Strategy, Compression Technique, and Artificial Intelligence Model), and to identify research gaps. The review results show that streaming efficiency depends on adaptive compression mechanisms, with a research paradigm shifting from rule-based adaptation toward intelligent adaptive compression. Despite these developments, significant unaddressed gaps remain, particularly concerning synchronization across platforms based on different codecs, low-latency real-time AI compression, robust network adaptation solutions for 5G/B5G, and cross-dimensional integration within a single framework. Future research directions are proposed in platform-specific synchronization models, multi-constraint compression, adaptive AI for slicing, and energy optimization through Federated Learning.

References

M. Ghosh dan C. Singhal, “A Review on Machine Learning Based User-centric Multimedia Streaming Techniques,” Comput. Commun., vol. 231, 2025, doi: 10.1016/j.comcom.2024.108011.

C. Timmerer et al., “HTTP Adaptive Streaming: A Review on Current Advances and Future Challenges,” ACM Trans. Multimed. Comput. Commun. Appl., vol. 21, no. 7, 2025, doi: 10.1145/3736306.

C. Cisco, “Annual Report: Reimagining The Future of Connectivity,” North America, 2022.

F. Chiariotti, “A Survey on 360 ◦ Video: Coding, Quality of Experience and Streaming,” Elsevier Comput. Commun., hal. 1–83, 21M.

D. Lorenzi, C. Doppler, dan I. Technology, “MEDUSA : A Dynamic Codec Switching Approach in HTTP Adaptive Streaming,” vol. 20, no. 10, 2024, doi: 10.1145/3656175.

J. Kua, G. Armitage, dan P. Branch, “A Survey of Rate Adaptation Techniques for Dynamic Adaptive Streaming over HTTP,” IEEE Commun. Surv. Tutorials, vol. 19, no. 3, hal. 1842–1866, 2017, doi: 10.1109/COMST.2017.2685630.

W. Li, X. Li, Y. Xu, Y. Yang, dan S. Lu, “MetaABR: A Meta-Learning Approach on Adaptative Bitrate Selection for Video Streaming,” IEEE Trans. Mob. Comput., vol. 23, no. 3, hal. 2422–2437, 2024, doi: 10.1109/TMC.2023.3260086.

J. Guo, X. Gong, W. Wang, X. Que, dan J. Liu, “SASRT: Semantic-Aware Super-Resolution Transmission for Adaptive Video Streaming over Wireless Multimedia Sensor Networks,” Sensor, hal. 1–20, 2019, doi: 10.3390/s19143121.

P. Dai, F. Song, K. Liu, Y. Dai, P. Zhou, dan S. Guo, “Edge Intelligence for Adaptive Multimedia Streaming in Heterogeneous Internet of Vehicles,” IEEE Trans. Mob. Comput., vol. 22, no. 3, hal. 1464–1478, 2023, doi: 10.1109/TMC.2021.3106147.

V. V Menon, H. Amirpour, dan C. Doppler, “EMES : Efficient Multi-encoding Schemes for HEVC-based Adaptive Bitrate Streaming,” vol. 19, no. 3, 2023, doi: 10.1145/3575659.

F. Tashtarian et al., “HxL3 : Optimized Delivery Architecture for HTTP Low-Latency Live Streaming,” IEEE Trans. Multimed., vol. 25, hal. 2585–2600, 2023, doi: 10.1109/TMM.2022.3148587.

V. V Menon, “Video Coding Enhancements for HTTP Adaptive Streaming,” hal. 6905–6909, 2022, doi: 10.1145/3503161.3548753.

A. Mehrabi, M. Siekkinen, dan A. Yla-jaaski, “Edge Computing Assisted Adaptive Mobile Video Streaming,” IEEE Trans. Mob. Comput., vol. 18, no. 4, hal. 787–800, 2019, doi: 10.1109/TMC.2018.2850026.

A. Bentaleb et al., “A Survey on Bitrate Adaptation Schemes for Streaming Media Over HTTP,” IEEE Commun. Surv. Tutorials, vol. 21, no. 1, hal. 562–585, 2019, doi: 10.1109/COMST.2018.2862938.

B. O. Turkkan, C. Chen, dan J. Zola, “GreenABR : Energy-Aware Adaptive Bitrate Streaming with Deep Reinforcement Learning,” in MMSys ’22: 13th ACM Multimedia Systems Conference, Athlone, Irlandia: SIGMM, 2022, hal. 150–163. doi: 10.1145/3524273.3528188.

G. Lu et al., “Content Adaptive and Error Propagation Aware Deep Video Compression,” mage Video Process., hal. 1–17, 2020, doi: 10.48550/arXiv.2003.11282.

M. Khani dan M. Sivaraman, Vibhaalakshmi Alizadeh, “Efficient Video Compression via Content-Adaptive Super-Resolution,” 2022.

M. Taha dan A. Ali, “Redirection and Protocol Mechanisms in Content Delivery Network-Edge Servers for Adaptive Video Streaming,” Appl. Sci., hal. 1–19, 2023, doi: 10.3390/ app13095386.

K. Khan, “A Taxonomy for Generative Adversarial Networks in Dynamic Adaptive Streaming Over HTTP,” vol. 06, no. 06, hal. 2482–2493, 2023, doi: 10.47191/ijmra/v6-i6-45.

H. Amirpour, M. Ghanbari, dan C. Timmerer, “DeepStream : Video Streaming Enhancements Using,” IEEE Trans. Circuits Syst. Video Technol., vol. 35, no. 4, hal. 3786–3797, 2025, doi: 10.1109/TCSVT.2022.3229079.

L. Tang, S. Member, J. Zhu, S. Member, X. Zhang, dan S. Member, “CANeRV : Content Adaptive Neural Representation for Video Compression,” Comput. Vis. Pattern Recognit., hal. 1–15, 2025, doi: 10.48550/arXiv.2502.06181.

B. Sisman, J. Yamagishi, S. King, dan H. Li, “An overview of voice conversion and its challenges: From statistical modeling to deep learning,” IEEE/ACM Trans. Audio Speech Lang. Process., vol. 29, hal. 132–157, 2021, doi: 10.1109/TASLP.2020.3038524.

L. Yu, T. Tillo, dan J. Xiao, “QoE-Driven Dynamic Adaptive Video Streaming Strategy With Future Information,” IEEE Trans. Broadcast., vol. 63, no. 3, hal. 523–534, 2017, doi: 10.1109/TBC.2017.2687698.

V. V Menon, H. Amirpour, dan M. Timmerer, Christian Ghanbari, “Efficient Multi-Encoding Algorithms for HTTP Adaptive Bitrate Streaming,” in Picture Coding Symposium (PCS), Bristol, United Kingdom: IEEE, 2021. doi: 10.1109/PCS50896.2021.9477499.

D. Wang, Y. Peng, X. Ma, W. Ding, H. Jiang, dan F. Chen, “Adaptive Wireless Video Streaming Based on Edge Computing: Opportunities and Approaches,” IEEE Trans. Serv. Comput., vol. 12, no. 5, hal. 685–697, 2019, doi: 10.1109/TSC.2018.2828426.

J. Zhao dan J. Pan, “Low-Latency Live Video Streaming over a Low-Earth-Orbit Satellite Network with DASH,” in Proceedings of the 15th ACM Multimedia Systems Conference, Bari, Italia: SIGMM, 2024, hal. 109–120. doi: 10.1145/3625468.3647616.

A. Pacini, D. Scano, A. Sgambelluri, L. Valcarenghi, dan A. Giorgetti, “Hybrid-Hierarchical Synchronization for Resilient Large-Scale SDN Architectures,” IEEE Access, vol. 13, hal. 9032–9046, 2025, doi: 10.1109/ACCESS.2025.3527224.

B. Morais, J. Zhang, dan G. Schirner, “TSAR-ILP: Tile-Based, Synchronization-AwaRe ILP Allocating Heterogeneous Platforms for Streaming Applications,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 42, no. 11, hal. 3693–3706, 2023, doi: 10.1109/TCAD.2023.3274050.

M. Naseer, Z. Khaled, I. T. A. Halim, dan A. Bahaa-Eldin, “Synchronization in Parallel Programming Models for Heterogeneous Many-Cores,” in 2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC), 2020, hal. 571–576. doi: 10.1109/PDGC50313.2020.9315797.

D. Shi, L. Li, R. Chen, P. Prakash, M. Pan, dan Y. Fang, “Towards Energy Efficient Federated Learning over 5G + Mobile Devices 5G and Beyond,” IEEE Trans. Cogn. Commun. Netw., vol. 11, no. 2, hal. 1053–1063, 2025, doi: 10.1109/TCCN.2025.3527719.

T. Vaiyapuri dan H. Aldosari, “SUQ-3 : A Three Stage Coarse-to-Fine Compression Framework for Sustainable Edge AI in Smart Farming,” Sustain., vol. 17, no. 5230, hal. 1–23, 2025, doi: 10.3390/su17125230.

B. Soundararajan, “Developing New AI Model Compression Techniques,” Int. J. Sci. Res. Eng. Manag., vol. 9, no. 3, hal. 1–8, 2025, doi: 10.55041/IJSREM43474.

A. Furtuanpey, “FrankenSplit : Efficient Neural Feature Compression with Shallow Variational Bottleneck Injection for Mobile Edge Computing,” hal. 1–17.

S. Li, J. Chen, S. Liu, C. Zhu, G. Tian, dan Y. Liu, “MCMC: Multi-Constrained Model Compression via One-Stage Envelope Reinforcement Learning,” IEEE Trans. Neural Networks Learn. Syst., vol. 36, no. 2, hal. 3410–3422, 2025, doi: 10.1109/TNNLS.2024.3353763.

M. Fleury, D. Kanellopoulos, dan N. N. Qadri, “Video streaming over MANETs : An overview of techniques,” Multimed. Tools Appl., vol. 78, hal. 23749–23782, 2019, doi: 10.1007/s11042-019-7679-0.

B. Boeckx, “Faculteit Wetenschappen,” Universiteit Hasselt, 2024.

A. A. Eloraby, S. Soliman, dan A. M. R. Adbullah, “Distributed Multimedia Systems : A Macro Perspective,” IEEE Access, vol. 13, no. October, hal. 182005–182024, 2025, doi: 10.1109/ACCESS.2025.3621888.

R. Herrero, “Analysis of IoT Mechanisms for Media Streaming,” Internet of Things, hal. 1–26, 2020, doi: 10.1016/j.iot.2020.100168.

O. Nawaz, M. Fiedler, dan S. Khatibi, “Mobile Devices with Additional Influencing Factors,” Electron., vol. 13, no. 2, hal. 1–17, 2024, doi: 10.3390/electronics13020329.

M. Alsader dan A. A. Barakabitze, “QoE-Driven Adaptive Video Streaming : Architectures , Techniques , and Future Research Challenges Toward 6G Networks,” IEEE Access, vol. 13, no. July, hal. 157408–157441, 2025, doi: 10.1109/ACCESS.2025.3597058.

R. Kalan dan I. Dulger, “A Survey on QoE Management Schemes for HTTP Adaptive Video Streaming : Challenges , Solutions , and Opportunities,” IEEE Access, vol. 12, no. October, hal. 170803–170839, 2024, doi: 10.1109/ACCESS.2024.3491613.

A. N. Mahmood, M. N. Mahmud, M. Fadzli, dan M. Salleh, “Challenges and Solutions for Video Streaming Services Quality of Experience ( QoE ) Prediction Toward 6G Wireless Networks,” 2025. doi: 10.58346/JISIS.2025.I2.047.

S. Yamagiwa dan T. Kato, “Universal Adaptive Stream-Based Entropy Coding,” IEEE Access, vol. 12, no. July, hal. 1–19, 2024, doi: 10.1109/ACCESS.2024.3429389.

L. Lei, Y. Yuan, T. X. Vu, S. Chatzinotas, M. Minardi, dan J. F. M. Montoya, “Dynamic-Adaptive AI Solutions for Network Slicing Management in Satellite-Integrated B5G Systems,” IEEE Netw., vol. 35, no. 6, hal. 91–97, 2021, doi: 10.1109/MNET.111.2100206.

K. Duran, H. Shin, T. Q. Duong, dan B. Canberk, “GenTwin: Generative AI-Powered Digital Twinning for Adaptive Management in IoT Networks,” IEEE Trans. Cogn. Commun. Netw., vol. 11, no. 2, hal. 1053–1063, 2025, doi: 10.1109/TCCN.2025.3527719.

R. Zhang, H. Du, Y. Liu, D. Niyato, dan J. Kang, “Interactive AI with Retrieval__-Augmented Generation for Next Generation Networking,” Netw. Internet Archit., hal. 1–10, 2018, doi: 10.48550/arXiv.2401.11391.

S. Rui, Y. Wu, E. Cui, M. Sun, W. Zhao, dan D. Fu, “Energy-efficiency Optimization for Heterogeneous Computing-assisted NOMA-MEC Edge AI Tasks,” Futur. Gener. Comput. Syst., vol. 162, 2025, doi: 10.1016/j.future.2024.07.036.

R. A. Hasan et al., “Energy-Efficient Task Offloading and Resource Allocation in Mobile Cloud Computing Using Edge-AI and Network Virtualization,” Khwarizmia, hal. 42–49, 2025, doi: 10.70470/KHWARIZMIA/2025/005.

D. K. Nishad, V. R. Verma, P. Rajput, dan S. Gupta, “Adaptive AI-enhanced computation offloading with machine learning for QoE optimization and energy- efficient mobile edge systems,” Sci. Rep., 2025.

Y. Xiao et al., “Reinforcement Learning Based Energy-Efficient Collaborative Inference for Mobile Edge Computing,” IEEE Trans. Commun., vol. 71, no. 2, hal. 864–876, 2023, doi: 10.1109/TCOMM.2022.3229033.

K. Yang, S. Member, Y. Shi, dan W. Yu, “Energy-Efficient Processing and Robust Wireless Cooperative Transmission for Edge Inference,” IEEE Internet Things J., vol. 7, no. 11, hal. 1–14, 2020, doi: 10.1109/JIOT.2020.2979523.

Published
2025-11-28
How to Cite
[1]
N. Ekawati, S. Tresnawati, S. Hanief, and W. T. Saputro, “Kompresi Adaptif untuk Streaming Multimedia Multi-Platform: A Review”, INTEK, vol. 8, no. 2, pp. 45-56, Nov. 2025.
Section
Articles

Most read articles by the same author(s)

1 2 > >>