Memprediksi Daftar Ulang Mahasiswa Baru Menggunakan Algoritma Bayesian Classification Di Universitas XYZ
Abstract
This study analyzes the PMB data in 2016. The PMB process at XYZ University has several paths, namely Regular, Transfer, and Bidikmisi. When the PMB process difficulties are encountered one of them is the number of prospective students who do not register again is increasing. Based on the identification of problems and information from officers the most important thing is the number of prospective students who do not re-register is increasing every year, thus affecting the impact of the number of PMB receipts. This study resolves these problems using the Bayesian Classification Algorithm so that the opportunity to re-register students can be known earlier. Based on the research conducted, it was concluded that the TDU class was 55% greater than the 45% DU class. This means that prospective students who do not completely re-register all study programs are larger. It was explained that PBSJ study programs 100% no prospective students who re-register. The Economic Education study program still has the opportunity of 75% of prospective students who are DU. 100% Physics Education study program no prospective students register. The Civil Engineering study program has a 25% chance that prospective students will be DU. The Agribusiness Study Program has the opportunity of 75% of prospective students doing DU. The 90% Animal Husbandry Study Program has no chance for prospective students to register. The Psychology study program has the same opportunities as the Animal Husbandry study program which is 90%, there is no chance that prospective students register. For the Law study program, it is possible for 90% of prospective students to register.
References
A.G. Mabrur dan R. Lubis, 2012, Penerapan Data Mining Untuk Memprediksi Kriteria Nasabah Kredit, Jurnal Komputa, Vol. 1 pp. 53 – 57
Budi S., 2007, Data Mining: Teknik Pemanfaatan Data Untuk Keperluan Bissnis, Graha Ilmu, Yogyakarta
Dewi S., 2012, Algoritma Bayesian Classification Untuk Memprediksi Heregristrasi Mahasiswa Baru STMIK Widya Pratama, Jurnal ICTech, Vol. 10 No. 2 Mei
Kusrini dan Luthfi T. Emha, 2009, Algoritma Data Mining, Andi, Yogyakarta
Larose T. Daniel, 2005, Discovering Knowledge In Data, An Introduction to Data Mining, Wiley-Interscience a John Wiley and Sons, Inc., Publication Taylor and Francis Group, London
Muwardah F.R., dan Pramunendar R.A., 2014, Penentuan Penerimaan Maha-siswa Baru Menggunakan Decision Tree, Penelitian Skripsi, Universitas Dian Nuswantoro, Semarang
Nugroho, Y.S., 2011, Data Mining Menggunakan Algoritma Naive Bayes Untuk Klasifikasi Kelulusan Mahasiswa, Penelitian Skripsi, Universitas Dian Nuswantoro, Semarang
Rodiyansyah S.F. dan Winarko E., 2012, Klasifikasi Posting Twitter Kemacetan Lalu Lintas Kota Bandung Menggunakan Naive Bayesian Classification, IJCCS, Volume 6 Nomor 1 Januari 2012, pp 91 – 100
Sandi Fajar R., dan Winarko E., 2012, Klasifikasi Posting Twitter Kemacetan Lalu Lintas kota Bandung Menggunakan Naive Bayesan Classification, Jurnal IJCCS Vol. 6 No. 1 pp. 91 – 100 Januari
Sugianti S., 2012, Algoritma Bayesian Classification Untuk Memprediksi Heregristrasi Mahasiswa Baru, Penelitian Skripsi, STMIK Widya Pratama
Susanto S., dan Suryadi D., 2010, Pengantar Data Mining, Menggali Pengetahuan Dari Bongkahan Data, Andi, Yogya-karta
Wu Xindong, dan Kumar Vipin, 2009, The Top Ten Algorithm in Data Mining, CRC Press
Widiastuti D., 2010, Analisa Perbandingan Algoritma SVM, Naive Bayes dan Decision Tree Dalam Mengklasifikasikan Serangan Pada Sistem Pendeteksi Intruisi, Penelitian Skripsi, Universitas Gunadharma, Jakarta
Copyright (c) 2018 Jurnal INTEK Program Studi Teknologi Informasi
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.