Struktur Koneksi Matematis pada Siswa Climber dalam Menyelesaikan Masalah SPLTV
Abstract
The structure of the mathematical connection is an illustration the students' steps in building mathematical connections. This study aims to analyze the structure of the mathematical connection of climber students in solving the problems of the Linear Equation System Three Variable. This research is a qualitative research. The subjects of this study were 2 students of class XI SMA Negeri 1 Salaman. The technique of taking the subject is using purposive sampling. Data collection techniques used mathematical connection ability tests, field notes, and interview. The instruments used mathematical connection ability test, and interview guide. The results showed that the mathematical connection structure of climber students in solving LESTV problems fulfilled four components in building mathematical connections, namely starting with mathematical understanding where climber students were able to recognize mathematical ideas by understanding information from the questions. Both mathematical representations, by being able to represent in the form of a linear equation of three variables by connecting between mathematical ideas. The third is mathematical connections, where climber students can connect ideas from linear equations of three variables to get a solution. Fourth, there is mathematical reasoning, with climber students being able to relate and use concepts in LESTV material that are interconnected to produce a coherent whole.
References
Amir, Z., Risnawati, Kurniati, A., & Prahmana, R. C. I. 2017. Adversity Quotient in Mathematics Learning (Quantitative Study on Students Boarding School in Pekanbaru). International Journal on Emerging Mathematics Education (IJEME), 1(2), 169-176. http://dx.doi.org/10.12928/ijeme.v1i2.5780
Chanifah, N. 2015. Profil Pemecahan Masalah Kontekstual Geometri Siswa SMP Berdasarkan Adversity Quotient (AQ). APOTEMA: Jurnal Program Studi Pendidikan Matematika, 1(2), 59–66. Retrieved from https://garuda.kemdikbud.go.id/documents/detail/508796
Dewi, S., Trapsilasiwi, D., Murtikusuma, R. P., Pambudi, D. S., & Oktavianingtyas, E. 2021. Analisis Representasi Matematis dalam Menyelesaikan Masalah Matematika Berdasarkan Tahapan Krulik dan Rudnick Ditinjau dari Adversity Quotient. Kadikma, 12(1), 25-33. https://doi.org/10.19184/kdma.v12i1.23841
Hendriana, H., Rohaeti, E. E., & Sumarmo, U. (2017). Hard Skills dan Soft Skills Matematik Siswa. Bandung: PT Refika Aditama.
Kurniawan, F., Nugraheni, P., Purwaningsih, W. A. & Wibowo, T. 2019. Keterampilan Metakognitif Siswa Climber dalam Pemecahan Masalah Matematika. Jurnal Tadris Matematika, 2(2), 163-174. https://doi.org/10.21274/jtm.2019.2.2.163-174
Mafulah, J., & Amin, S. M. 2020. Kemampuan Koneksi Matematis Siswa dalam Memecahkan Masalah Matematika Ditinjau dari Adversity Quotient. Mathedunesa, 9(1), 241-250. Retrieved from https://jurnalmahasiswa.unesa.ac.id/index.php/3/article/view/34129/pdf
Mauleto, K. 2019. Analisis Kemampuan Pemecahan masalah Ditinjau dari Indikator NCTM dan Aspek Berpikir Kritis Matematis Siwa di Kelas 7B SMP Kanisius Kalasan. JIPMat: Jurnal Ilmiah Pendidikan Matematika, 4(2), 125. https://doi.org/10.26877/jipmat.v4i2.4261
NCTM. 2000. Principles and Standarts for School Mathematics. Reston, VA: The National Council of Teachers of Mathematics, Inc.
PISA. 2018. Programme for International Student Assesment 2018 Result in Focus. Paris: OECD Publishing.
Ramdhani, M. R., Widyastuti, E., & Subekti, F. E. 2016. Analisis Kemampuan Koneksi Matematis Siswa Kelas VII SMP Negeri 1 Kembaran Materi Bangun Datar. Prosiding Seminar Matematika dan Pendidikan Matematika FKIP UNS (pp. 403-414). Surakarta: Universitas Sebelas Maret.
Romli, M. 2016. Profil Koneksi Matematis Siswa Perempuan SMA dengan Kemampuan Matematika Tinggi dalam Menyelesaikan Masalah Matematika. Journal of Mathematics Education, Science and Technology, 1(2), 144-163. https://doi.org/10.26877/jipmat.v1i2.1241
Septian, A., & Soeleman, M. 2022. Asosiasi Kemandirian Belajar dengan Kemampuan Representasi dan Koneksi Matematis pada Kalkulus Integral. Prisma, 11(1), 71-81. https://doi.org/10.35194/jp.v11i1.2074
Stoltz, P.G. 2000. Adversity Quotient Mengubah Hambatan Menjadi Peluang. Jakarta: PT Gramedia Widia sarana Indonesia.
Sukardewi, N., Dantes, N., & Natajaya, N. 2013. Kontribusi Adversity Quotient (AQ), Etos Kerja, dan Budaya Organisasi Terhadap Kinerja Guru SMA Negeri di Kota Amplapura. e-Journal Program Pascasarjana Universitas Pendidikan Ganesha, 4, 1-12. https://doi.org/10.23887/japi.v4i1.963
Susanti, E. 2012. Meningkatkan penalaran siswa melalui koneksi matematika. Prosiding Seminar Nasional Matematika dan Pendidikan Matematika Jurusan Pendidikan Matematika FMIPA UNY (pp. 289-296). Yogyakarta : UNY Press.
Wahyuni, R., & Prihatiningtyas, N. C. 2020. Kemampuan Pemahaman Konsep Matematika terhadap Kemampuan Koneksi Matematika Siswa pada Materi Perbandingan. Jurnal Variabel, 3(2), 66-73. http://dx.doi.org/10.26737/var.v3i2.2269
Wardani, N. K., Sutopo, & Pambudi, D. 2017. Profil Respons Siswa Berdasarkan Taksonomi SOLO dalam Memecahkan Masalah Matematika pada Materi Pokok Lingkaran Ditinjau dari Adversity Quotient. Jurnal Pendidikan Matematika dan Matematika, 1(4), 91-107. Retrieved from https://jurnal.fkip.uns.ac.id/index.php/matematika/article/view/11606/0
Wibowo, T., Budiyono, & Kurniasih, N. 2013. Kemampuan Koneksi Matematika pada Kompetensi Dasar Menghitung Luas Permukaan dan Volume Kubus, Balok, Prisma, dan Limas. Ekuivalen Vol 2: 44-49.