Enhancing Students’ Concepts Mastery in Kinetic Theory of Gases Through the STEM-Discovery Learning Model
Abstract
Students' difficulties with gas kinetic theory material have led to low mastery of physics concepts. Improving mastery of the concept of the kinetic theory of gases can be supported by using learning models. There have been many studies that prove that discovery learning can influence physics learning outcomes. However, this study uses a STEM approach integrated into a discovery learning model that acts as part of the inquiry level in physics classes Merdeka curriculum. This research aims to improve students' mastery of concepts in the kinetic theory of gases material through the STEM-discovery learning model. This research used a one-group pretest and posttest design on 30 students of class XI Merdeka 4 at SMAN 1 Dolopo. The instruments used are the RPP and five questions describing the concept mastery test. The data obtained was then analyzed using the normality test, difference test, N-gain, and effect size, and categorizing the students' concept mastery level for each question. The results of this research reveal that STEM-discovery learning is able to increase students' mastery of concepts in kinetic gas theory material. Interestingly, this research also found that students' correct conceptions have not been able to be stored in memory very well, so it is necessary to link kinetic gas theory material to other physics material that is still relevant so that students are motivated to remember and retain concepts.
Downloads
References
A. P. Putra, C. Rochman, and W. Setya, “Peningkatan Penguasaan Konsep Fisika Menggunakan Laboratorium Virtual Phet Materi Teori Kinetik Gas,” Journal of Teaching and Learning Physics, vol. 5, no. 2, pp. 80–86, 2020, doi: 10.15575/jotalp.v5i2.7991.
K. Cummings, P. W. Laws, E. F. Redish, P. J. Cooney, and J. R. Christman, “Student Solutions Manual to accompany Understanding Physics,” in Student Solutions Manual to accompany Understanding Physics, vol. 240, 2004.
A. D. Robertson and P. S. Shaffer, “University Student and K-12 Teacher Reasoning about the Basic Tenets of Kinetic-Molecular Theory, Part I: Volume of an Ideal Gas,” Am J Phys, vol. 81, no. 4, pp. 303–312, 2013, doi: 10.1119/1.4775153.
C. H. Kautz, P. R. L. Heron, M. E. Loverude, and L. C. McDermott, “Student Understanding of the Ideal Gas Law, Part I: A Macroscopic Perspective,” Am J Phys, vol. 73, no. 11, pp. 1055–1063, 2005, doi: 10.1119/1.2049286.
M. Mauke, I. W. Sadia, and I. W. Suastra, “Pengaruh Model Contextual Teaching and Learning Terhadap Pemahaman Konsep dan Kemampuan Pemecahan Masalah dalam Pembelajaran IPA-Fisika di MTs Negeri Negara,” e-Journal Program Pascasarjana Universitas Pendidikan Ganesha Program Studi IPA, vol. 3, no. 2, pp. 1–12, 2013.
I. D. Kurniawati and S.- Nita, “Media Pembelajaran Berbasis Multimedia Interaktif Untuk Meningkatkan Pemahaman Konsep Mahasiswa,” DoubleClick: Journal of Computer and Information Technology, vol. 1, no. 2, p. 68, 2018, doi: 10.25273/doubleclick.v1i2.1540.
M. R. Yaumi, S. Sutopo, and S. Zulaikah, “Analisis Penguasaan Konsep dan Kesulitan Siswa pada Materi Teori Kinetik Gas,” Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan, vol. 4, no. 10, p. 1333, 2019, doi: 10.17977/jptpp.v4i10.12839.
U. Saharsa, M. Qaddafi, and Baharuddin, “Efektivitas Penerapan Model Pembelajaran Problem Based Learning Berbantuan Video Based Laboratory Terhadap Peningkatan Pemahaman Konsep Fisika,” Jurnal Pendidikan Fisika, vol. 6, no. 2, pp. 57–64, 2018.
S. Q. Damayanti, I. K. Mahardika, and Indrawati, “Penerapan Model Discovery Learning Berbantuan Media Animasi Macromedia Flash Disertai LKS yang Terintegrasi dengan Multirepresentasi dalam Pembelajaran Fisika di SMA,” Jurnal Pembelajaran Fisika, vol. 4, no. 4, pp. 357–364, 2016.
K. Laksmiari, S. H. B. Praswoto, and S. N. Ismaya, “Kemampuan Pemecahan Masalah Siswa pada Pokok Bahasan Elastisitas dengan Menggunakan Model Pembelajaran Discovery Learning di SMAN 4 Jember,” FKIP e-PROCEEDING, vol. 4, no. 1, pp. 168–172, 2019.
P. I. Sari and A. Harjono, “Penggunaan Discovery Learning Berbantuan Laboratorium Virtual pada Penguasaan Konsep Fisika Siswa,” Jurnal Pendidikan Fisika dan Teknologi, vol. II, no. 4, pp. 176–182, 2016.
I. N. S. Degeng, S. Utaya, and D. Kuswandi, “The Influence of JIGSAW Learning Model and Discovery Learning on Learning Discipline and Learning Outcomes,” Pegem Journal of Education & Instruction/Pegem Egitim ve Ögretim, vol. 12, no. 2, 2022.
S. Rosmah, M. Tindangen, and V. M. Rambitan, “Analisis Permasalahan terkait Kebutuhan Pengembangan Perangkat Pembelajaran Model Discovery Learning untuk Meningkatkan Pemahaman Konsep dan Sikap Ilmiah,” Jurnal Pendidikan, vol. 3, no. 3, pp. 322–324, 2018.
U. E. Sapitri, Y. Kurniawan, and E. Sulistri, “Penerapan Model Discovery Learning untuk Meningkatkan Keterampilan Berpikir Kritis Siswa Kelas X pada Materi Kalor,” JIPF (Jurnal Ilmu Pendidikan Fisika), vol. 1, no. 2, p. 64, 2016, doi: 10.26737/jipf.v1i2.66.
V. Amar, N. Nirwana, and I. Sakti, “Peningkatan Aktivitas Belajar dan Pemahaman Konsep Fisika melalui Model Discovery Learning pada Konsep Getaran Harmonis di Kelas X MIPA 2 SMAN 3 Kota Bengkulu,” Jurnal Kumparan Fisika, vol. 1, no. 2, pp. 40–45, 2018, doi: 10.33369/jkf.1.2.40-45.
D. Brigenta, J. Handhika, and M. Sasono, “Pengembangan Modul Berbasis Discovery Learning untuk Meningkatkan Pemahaman Konsep,” Proceedings of SNPF (Seminar ..., pp. 167–173, 2017
J. H. Senjani, N. Khoiri, and H. Nuroso, “Pengaruh Model Discovery Learning Berbantuan Video Pembelajaran terhadap Pemahaman Konsep Siswa pada Pokok Bahasan Optika Geometris Kelas X SMA Negeri 2 Pati Tahun Pelajaran 2014/2015,” Jurnal Penelitian Pembelajaran Fisika, vol. 6, no. 2, 2015, doi: 10.3969/j.issn.1008-0813.2015.03.002.
L. Sahara, N. Nafarudin, S. Fayanto, and B. A. Tairjanovna, “Analysis of Improving Students’ Physics Conceptual Understanding through Discovery Learning Models Supported by Multi-representation: Measurement Topic,” Indonesian Review of Physics, vol. 3, no. 2, p. 57, 2020, doi: 10.12928/irip.v3i2.3064.
L. D. English, “STEM education K-12: perspectives on integration,” Int J STEM Educ, vol. 3, no. 1, pp. 1–8, 2016, doi: 10.1186/s40594-016-0036-1.
N. P. Tenti, - Asrizal, - Murtiani, and - Gusnedi, “Meta-Analysis of The Effect of Integration Stem Education in a Various Learning Models on Student Physics Learning Outcomes,” Pillar of Physics Education, vol. 13, no. 4, p. 520, 2021, doi: 10.24036/10331171074.
T. R. Kelley and J. G. Knowles, “A Conceptual Framework for Integrated STEM Education,” Int J STEM Educ, vol. 3, no. 1, 2016, doi: 10.1186/s40594-016-0046-z.
Widayanti, A. Abdurrahman, and A. Suyatna, “Future Physics Learning Materials Based on STEM Education: Analysis of Teachers and Students Perceptions,” J Phys Conf Ser, vol. 1155, no. 1, 2019, doi: 10.1088/1742-6596/1155/1/012021.
V. Viyanti, A. Suyatna, and A. L. Naj’iyah, “Analisis Kebutuhan Pengembangan Strategi Pembelajaran Fisika Berbasis STEM di Era Digital Mengakomodasi Ragam Gaya Belajar dan Pengetahuan Awal,” Radiasi : Jurnal Berkala Pendidikan Fisika, vol. 14, no. 1, pp. 1–10, Apr. 2021, doi: 10.37729/radiasi.v14i1.313.
N. Lestari et al., “The 21st Century Paradigm in Supporting Sustainable Development,” in Tangguh Denara Jaya Publisher, 2023, pp. 1–148.
F. Fadlina and S. Ritonga, “The Implementation of STEM-Based Discovery Learning Model in Motion Systems Concept to Improve Learning Outcomes,” Asian Journal of Science Education, vol. 3, no. 2, pp. 120–125, 2021, doi: 10.24815/ajse.v3i2.19724.
R. P. Khotimah, M. Adnan, C. N. C. Ahmad, and B. Murtiyasa, “The development of STEM-based discovery learning module in differential equations: One-to-one eval_uation,” AIP Conf Proc, vol. 2479, no. July, 2022, doi: 10.1063/5.0099799.
D. S. Astryani, A. Susanta, I. Koto, and E. Susanto, “STEM-Integrated Student Worksheets on Space Figure Using the Discovery Learning Model for Elementary School Students,” Profesi Pendidikan Dasar, vol. 9, no. 2, pp. 191–205, 2022, doi: 10.23917/ppd.v9i2.19319.
C. J. Wenning, “Levels of Inquiry: Hierarchies of Pedagogical Practices and Inquiry Processes,” Journal of Physics Teacher Education Online, vol. 2, no. 3, pp. 3–11, 2005,
J. W. Cresswell, “Educational Research - Planning, Conducting, And eval_uating Quantitative and Qualitative Research - Fifth Edition (5th ed.),” in Pearson, 2015.
Rukminingsih, G. Adnan, and M. A. Latief, Metode Penelitian Pendidikan. Penelitian Kuantitatif, Penelitian Kualitatif, Penelitian Tindakan Kelas, vol. 53, no. 9. 2020.
J. Schreiber and K. Asner-Self, “Educational Research,” in John Wiley & Sons, Inc, 2011.
T. Nurhuda, D. Rusdiana, and W. Setiawan, “Analyzing Students’ Level of Understanding on Kinetic Theory of Gases,” J Phys Conf Ser, vol. 812, no. 1, p. 012105, 2017, doi: 10.1088/1742-6596/755/1/011001.
R. R. Hake, “Interactive-engagement Versus Traditional Methods,” Am J Phys, vol. 66, no. 1, pp. 64–74, 1998.
Sutopo and B. Waldrip, “Impact of a Representational Approach on Students’ Reasoning and Conceptual Understanding in Learning Mechanics,” Int J Sci Math Educ, vol. 12, no. November 2012, pp. 741–766, 2014,
N. L. Leech, G. W. Gloeckner, and K. C. Barrett, IBM SPSS for Introductory Statistics: Use and Interpretation, Fifth Edition. 2012.
Z. C. Zacharia and T. de Jong, “The Effects on Students’ Conceptual Understanding of Electric Circuits of Introducing Virtual Manipulatives Within a Physical Manipulatives-Oriented Curriculum,” Cogn Instr, vol. 32, no. 2, pp. 101–158, 2014, doi: 10.1080/07370008.2014.887083.
S. Y. Lin and C. Singh, “Effect of scaffolding on helping introductory physics students solve quantitative problems involving strong alternative conceptions,” Physical Review Special Topics - Physics Education Research, vol. 11, no. 2, pp. 1–19, 2015, doi: 10.1103/PhysRevSTPER.11.020105.
S. Salmiza, “The Level of B. Sc. Ed Students’ Conceptual Understanding of Newtonian Physics,” International Journal of Academic Research in Business and Social Sciences, vol. 1, no. 3, pp. 249–256, 2011.
E. B. Pollock, J. R. Thompson, D. B. Mountcastle, L. Hsu, C. Henderson, and L. McCullough, “Student Understanding of The Physics and Mathematics of Process Variables In P-V Diagrams,” in AIP Conference Proceedings, AIP, 2007, pp. 168–171. doi: 10.1063/1.2820924.
P. Suparno, “Miskonsepsi dan Perubahan Konsep dalam Pendidikan Fisika,” in Gramedia Widiasarana, 2013.
L. Ariyanto, D. Aditya, and I. Dwijayanti, “Pengembangan Android Apps Berbasis Discovery Learning untuk Meningkatkan Pemahaman Konsep Matematis Siswa Kelas VII,” Edumatika: Jurnal Riset Pendidikan Matematika, vol. 2, no. 1, p. 40, 2019, doi: 10.32939/ejrpm.v2i1.355.
W. Sanjaya, “Strategi Pembelajaran Berorientasi Standar Proses Pendidikan,” in Kencana Prenada Media Group, 2007.
E. R. Sari, P. Marungkil, and S. Sahrul, “Pengaruh model discovery learning terhadap hasil belajar fisika pada pokok bahasan kalor di SMP Negeri 2,” Jurnal Inonovasi dan Pembelajaran Fisika, vol. 1, no. 1, pp. 119–126, 2017, [Online]. Available: http://fkip.unsri.ac.id/index._php/%0Amenu/104
F. D. Putri, E. Purwaningsih, and N. Munfaridah, “Konstruksi Identitas STEM (Science, Technology, Engineering, Mathematics) Siswa SMA: Studi Kasus di Pembelajaran Fisika,” Briliant: Jurnal Riset dan Konseptual, vol. 9, no. 1, p. 17, Feb. 2024, doi: 10.28926/briliant.v9i1.1356.
S. Fitria, A. Harjono, G. Gunawan, and S. Ayub, “Pengembangan Perangkat dengan Model Pembelajaran Advance Organizer untuk Meningkatkan Penguasaan Konsep dan Retensi Fisika Peserta Didik,” Konstan - Jurnal Fisika Dan Pendidikan Fisika, vol. 6, no. 1, pp. 11–17, 2021, doi: 10.20414/konstan.v6i1.62.
M. Maesyarah, A. W. Jufri, and K. Kusmiyati, “Analisis Penguasaan Konsep Dan Miskonsepsi Biologi Dengan Teknik Modifikasi Certainty of Response Index Pada Siswa Smp Se-Kota Sumbawa Besar,” Jurnal Pijar Mipa, vol. 10, no. 1, pp. 1–6, 2015, doi: 10.29303/jpm.v10i1.8.
Copyright (c) 2024 Shinta Dewi Susanti, Lia Yuliati, Endang Purwaningsih, Febi Dwi Putri
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.